Topic 6.3: Defense Against Infectious Disease

Assessment Statements: 6.3.1 – 6.3.8
Pathogens and disease
Pathogens and disease

- A **pathogen** is defined as any foreign organism or object that can cause a disease.
Pathogens and disease

• A **pathogen** is defined as any foreign organism or object that can cause a disease.

• Pathogens may include the following:
 - Viruses, such as HIV, cold, polio, influenza, herpes, measles etc.
 - Bacteria, such as tuberculosis, cholera, botulism, *E. coli*, plague, anthrax, pneumonia etc.
 - Protists, such as *Giardia*, malaria, ameobic dysentery, *Vaginalis* etc.
 - Fungi, such as athlete’s foot, yeast infections, ring worm, black mold, plant diseases etc.
 - Invertebrates, such as tapeworms, liver flukes, trichinosis, pinworms, toxoplasmosis etc.
Pathogens and disease

- **A pathogen** is defined as any foreign organism or object that can cause a disease.

- Pathogens may include the following:
 - Viruses, such as HIV, cold, polio, influenza, herpes, measles etc.
 - Bacteria, such as tuberculosis, cholera, botulism, *E. coli*, plague, anthrax, pneumonia etc.
 - Protists, such as *Giardia*, malaria, ameobic dysentery, *Vaginalis* etc.
 - Fungi, such as athlete’s foot, yeast infections, ring worm, black mold, plant diseases etc.
 - Invertebrates, such as tapeworms, liver flukes, trichinosis, pinworms, toxoplasmosis etc.

- The **disease** is the particular set of symptoms that arise after infection by a specific pathogen. Sometimes the disease and the pathogen share the same name, sometimes not.
Treating diseases: bacterial
Treating diseases: bacterial

- Many bacterial infections can be treated with specific or general antibiotics.
Treating diseases: bacterial

- Many bacterial infections can be treated with specific or general antibiotics.
Treating diseases: bacterial

• Many bacterial infections can be treated with specific or general antibiotics.

• Most antibiotics work by blocking specific metabolic pathways within the bacteria, thus killing them or preventing them from reproducing. They don’t hurt the host (much) because the metabolic pathways are different.
Treating diseases: bacterial

- Many bacterial infections can be treated with specific or general antibiotics.

- Most antibiotics work by blocking specific metabolic pathways within the bacteria, thus killing them or preventing them from reproducing. They don’t hurt the host (much) because the metabolic pathways are different.
Treating diseases: bacterial

• Many bacterial infections can be treated with specific or general antibiotics.

• Most antibiotics work by blocking specific metabolic pathways within the bacteria, thus killing them or preventing them from reproducing. They don’t hurt the host (much) because the metabolic pathways are different.

• Antibiotics are **not** effective against viruses because viruses do not have their own metabolic pathways, they must use the host cell’s. Therefore, anything that disrupted the virus would also kill the host cell.
Treating diseases: bacterial

• Many bacterial infections can be treated with specific or general antibiotics.

• Most antibiotics work by blocking specific metabolic pathways within the bacteria, thus killing them or preventing them from reproducing. They don’t hurt the host (much) because the metabolic pathways are different.

• Antibiotics are not effective against viruses because viruses do not have their own metabolic pathways, they must use the host cell’s. Therefore, anything that disrupted the virus would also kill the host cell.
Treating diseases: bacterial

• Many bacterial infections can be treated with specific or general antibiotics.

• Most antibiotics work by blocking specific metabolic pathways within the bacteria, thus killing them or preventing them from reproducing. They don’t hurt the host (much) because the metabolic pathways are different.

• Antibiotics are not effective against viruses because viruses do not have their own metabolic pathways, they must use the host cell’s. Therefore, anything that disrupted the virus would also kill the host cell.

• Doctors are now limiting the amount of antibiotics prescribed, and prescribing the most specific antibiotic possible to limit the rate of natural selection of antibiotic-resistance in many bacteria.
Treating diseases: viral
Treating diseases: viral

- You can treat the symptoms, but you usually have to depend on internal immune response to get rid of the actual virus.
Treating diseases: viral

- You can treat the symptoms, but you usually have to depend on internal immune response to get rid of the actual virus.
Treating diseases: viral

- You can treat the symptoms, but you usually have to depend on internal immune response to get rid of the actual virus.

- Immune response can be enhanced by vaccinations that deliver an inactive form of the virus, so it is later recognized and quickly destroyed by the immune system when the real thing comes along.
Treating diseases: viral

- You can treat the symptoms, but you usually have to depend on internal immune response to get rid of the actual virus.

- Immune response can be enhanced by vaccinations that deliver an inactive form of the virus, so it is later recognized and quickly destroyed by the immune system when the real thing comes along.
Treating diseases: viral

• You can treat the symptoms, but you usually have to depend on internal immune response to get rid of the actual virus.

• Immune response can be enhanced by vaccinations that deliver an inactive form of the virus, so it is later recognized and quickly destroyed by the immune system when the real thing comes along.

• Examples of currently available vaccinations include measles, mumps, rubella, chicken pox, polio, small pox, influenza.
Treating diseases: viral

- You can treat the symptoms, but you usually have to depend on internal immune response to get rid of the actual virus.

- Immune response can be enhanced by vaccinations that deliver an inactive form of the virus, so it is later recognized and quickly destroyed by the immune system when the real thing comes along.

- Examples of currently available vaccinations include measles, mumps, rubella, chicken pox, polio, small pox, influenza.
Treating diseases: viral

- You can treat the symptoms, but you usually have to depend on internal immune response to get rid of the actual virus.

- Immune response can be enhanced by vaccinations that deliver an inactive form of the virus, so it is later recognized and quickly destroyed by the immune system when the real thing comes along.

- Examples of currently available vaccinations include measles, mumps, rubella, chicken pox, polio, small pox, influenza.

- Despite fears, there is very little risk to vaccination and enormous benefit. The more people are vaccinated in a community, the less risk of disease to all.
How pathogens get in
How pathogens get in

• In order to cause a disease, pathogens must enter the body:
 – Airborne pathogens are breathed into lungs
 – Ingested with contaminated food or drink
 – Enter through open wound
 – Enter through mucus membranes in eyes, mouth, other body openings
 – Transfer body fluids such as saliva, blood, semen
How pathogens get in

• In order to cause a disease, pathogens must enter the body:
 – Airborne pathogens are breathed into lungs
 – Ingested with contaminated food or drink
 – Enter through open wound
 – Enter through mucus membranes in eyes, mouth, other body openings
 – Transfer body fluids such as saliva, blood, semen

• Generally, intact skin is a good barrier, but tiny abrasions may allow entrance of pathogens. Any opening in the body is vulnerable to invasion by pathogens.
Immunity
Immunity

- Immunity is an organism’s defense against pathogens as well as abnormal or cancerous body cells.
Immunity

• Immunity is an organism’s defense against pathogens as well as abnormal or cancerous body cells.

• **Innate immunity** refers to the defense mechanisms that are innately present in an organism, regardless of previous exposure to pathogens.
 – includes skin, mucus membranes and phagocytic leukocytes.
Immunity

• Immunity is an organism’s defense against pathogens as well as abnormal or cancerous body cells.

• **Innate immunity** refers to the defense mechanisms that are innately present in an organism, regardless of previous exposure to pathogens.
 – includes skin, mucus membranes and phagocytic leukocytes.

• **Acquired immunity** refers to the mechanisms that develop in an organism in response to exposure to a specific pathogen or toxin.
 – Includes the production and retention of cells that produce antibodies specific to the pathogen.
The role of skin and mucus membranes
The role of skin and mucus membranes

• Any pathogen must somehow penetrate the body. Therefore, the skin is the first barrier against infection.
The role of skin and mucus membranes

- Any pathogen must somehow penetrate the body. Therefore, the skin is the first barrier against infection.
The role of skin and mucus membranes

• Any pathogen must somehow penetrate the body. Therefore, the skin is the first barrier against infection.

• **Mucus membranes** line the digestive, respiratory and genitourinary tracts. Mucus is secreted by some cells and this traps microbes and other particles, and then cilia sweep the mucus away.
The role of skin and mucus membranes

- Any pathogen must somehow penetrate the body. Therefore, the skin is the first barrier against infection.

- **Mucus membranes** line the digestive, respiratory and genitourinary tracts. Mucus is secreted by some cells and this traps microbes and other particles, and then cilia sweep the mucus away.
The role of skin and mucus membranes

• Any pathogen must somehow penetrate the body. Therefore, the skin is the first barrier against infection.

• **Mucus membranes** line the digestive, respiratory and genitourinary tracts. Mucus is secreted by some cells and this traps microbes and other particles, and then cilia sweep the mucus away.

• Mucus and other secretions such as saliva, sweat and tears bathe exposed areas and wash away potential invaders. Many secretions also contain **lysozyme**, which digests the cell walls of bacteria.
The role of skin and mucus membranes

• Any pathogen must somehow penetrate the body. Therefore, the skin is the first barrier against infection.

• Mucus membranes line the digestive, respiratory and genitourinary tracts. Mucus is secreted by some cells and this traps microbes and other particles, and then cilia sweep the mucus away.

• Mucus and other secretions such as saliva, sweat and tears bathe exposed areas and wash away potential invaders. Many secretions also contain lysozyme, which digests the cell walls of bacteria.
The role of skin and mucus membranes

• Any pathogen must somehow penetrate the body. Therefore, the skin is the first barrier against infection.

• Mucus membranes line the digestive, respiratory and genitourinary tracts. Mucus is secreted by some cells and this traps microbes and other particles, and then cilia sweep the mucus away.

• Mucus and other secretions such as saliva, sweat and tears bathe exposed areas and wash away potential invaders. Many secretions also contain lysozyme, which digests the cell walls of bacteria.

• The acidic environment of the skin (as a result of sweat and oil), saliva and stomach acid also are harmful to many types of microbes, preventing growth.
Phagocytic leukocytes
Phagocytic leukocytes

• There are many types of leukocytes, or white blood cells, which are found in the bloodstream, but also in the lymphatic system and in tissues in the space between other cells.
Phagocytic leukocytes

- There are many types of **leukocytes**, or white blood cells, which are found in the bloodstream, but also in the lymphatic system and in tissues in the space between other cells.

- **Phagocytic leukocytes** (also called phagocytes or macrophages) ingest and destroy pathogens:
 - The phagocyte attaches to the surface of the foreign microbe or object
 - The phagocyte engulfs the microbe by extending its cell membrane around the object
 - Lysosomes fuse with the vacuole, releasing hydrolytic enzymes like lysozyme, and nitric oxide, which poisons the microbes.
 - The microbial debris is then removed from the cell by exocytosis.
The lymphatic system
The lymphatic system

- The human lymphatic system is a network of vessels and nodes that is intertwined with the circulatory system.
The lymphatic system

- The human lymphatic system is a network of vessels and nodes that is intertwined with the circulatory system.
The lymphatic system

- The human lymphatic system is a network of vessels and nodes that is intertwined with the circulatory system.

- Lymphatic capillaries pick up extra fluid that continually leaks out of the blood vessels. This, along with the white blood cells in the tissues collects along the lymphatic vessels and drains into nodes, where it is filtered through connective tissue.
The lymphatic system

• The human lymphatic system is a network of vessels and nodes that is intertwined with the circulatory system.

• Lymphatic capillaries pick up extra fluid that continually leaks out of the blood vessels. This, along with the white blood cells in the tissues collects along the lymphatic vessels and drains into nodes, where it is filtered through connective tissue.
The lymphatic system

- The human lymphatic system is a network of vessels and nodes that is intertwined with the circulatory system.

- Lymphatic capillaries pick up extra fluid that continually leaks out of the blood vessels. This, along with the white blood cells in the tissues collects along the lymphatic vessels and drains into nodes, where it is filtered through connective tissue.

- Large collections of phagocytic white blood cells are present in the lymph nodes, and they destroy any pathogens or microbes that pass through.
The lymphatic system

- The human lymphatic system is a network of vessels and nodes that is intertwined with the circulatory system.

- Lymphatic capillaries pick up extra fluid that continually leaks out of the blood vessels. This, along with the white blood cells in the tissues collects along the lymphatic vessels and drains into nodes, where it is filtered through connective tissue.

- Large collections of phagocytic white blood cells are present in the lymph nodes, and they destroy any pathogens or microbes that pass through.
The lymphatic system

- The human lymphatic system is a network of vessels and nodes that is intertwined with the circulatory system.

- Lymphatic capillaries pick up extra fluid that continually leaks out of the blood vessels. This, along with the white blood cells in the tissues collects along the lymphatic vessels and drains into nodes, where it is filtered through connective tissue.

- Large collections of phagocytic white blood cells are present in the lymph nodes, and they destroy any pathogens or microbes that pass through.

- Lymph is eventually drained back into the bloodstream via ducts that enter the vena cava near the shoulders.
Antigens and Antibodies

- **Lymphocytes** (non-phagocytic leucocytes) are white blood cells involved in the process of acquiring immunity.
 - They are in the bloodstream and lymphatic system, and they are concentrated in the spleen and lymph nodes.
 - They are activated by phagocytes that discover a pathogen.

- **Antigens** are any foreign molecule that can be recognized by lymphocytes such as
 - proteins or polysaccharides on the surfaces of pathogens
 - materials that are produced by pathogens, such as toxins.

- **Antibodies** (immunoglobins) are molecules produced by lymphocytes, that recognize and attach to specific antigens, incapacitating them and allowing for easy destruction by the phagocytes.
How antibodies help destroy antigens

Binding of antibodies to antigens inactivates antigens by:

- Viral neutralization (blocks binding to host) and opsonization (increases phagocytosis)
- Agglutination of antigen-bearing particles, such as microbes
- Precipitation of soluble antigens
- Activation of complement system and pore formation

Enhances:

- Phagocytosis
- Cell lysis

Macrophage

Complement proteins

MAC

Pore

Foreign cell

Virus

Bacterium

Bacteria

Soluble antigens
Antibody Production

• Because lymphocytes are so specific, a given antigen will only interact with a few types out of millions.

• Once lymphocyte recognizes an antigen, it immediately divides and produces clones, called effector cells and memory cells.

• Effector cells are short-lived and work to combat that particular antigen by producing antibodies specific to that antigen.

• Memory cells are long-lived and contribute to lasting immunity against that particular antigen, so that when an antigen is encountered again, the immune response is faster and more effective, often preventing the disease from ever manifesting.
The phagocyte digests a microbe and alerts leukocytes by presenting the antigen. Effector cells produce antibodies, which bind to the antigens.

The leukocytes divide to produce effector cells and memory cells.
HIV

• The HIV virus infects and destroys leukocytes (specifically, helper T cells).
 – After initial infection, there may be a long latency period before this happens.

• This results in a reduction in the ability to mount an immune response to other pathogens.

• The cells of the immune system cannot coordinate and antibodies are not produced.
 – This results in the disease called AIDS
 – Death is usually the result of the inability to fight off secondary infections such as colds or pneumonia.
Issues related to AIDS

• HIV is transmitted through blood or bodily fluid, and was originally associated with drug users and homosexuals, who are more likely to have such an exchange.

• This resulted in initial reluctance to devote funds to research, because of the association with “taboo” behaviors. This is no longer the case, AIDS research and education are heavily funded.

• Individuals with HIV may face discrimination in employment, insurance, education, and social acceptance.

• HIV infection rates are exceptionally high in parts of Africa where there is limited medical care and education about how HIV is transmitted, and high rates of unprotected sex.

• The “Global Gag Rule” prohibits the use of US federal funds for AIDS education (in all countries) when it includes education on contraception and abortion.
 – Originated by Regan, recalled by Clinton, reinstated by Bush, recalled by Obama